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Knowledge of soil hydraulic properties, mainly the 
soil water retention curve and hydraulic conductivity, 
is essential for crop modeling and can influence simu-

lated crop responses to soil water status (Ma et al., 2012a). Due 
to a lack of their measurement or inadequate estimation from 
pedotransfer functions for a field, the soil hydraulic parameters 
in a model are, most often, calibrated along with crop param-
eters (Ma et al., 2012a, 2012b). However, an important aspect 
of the soil hydraulic properties is their high spatial variability 
in a field. For example, as much as two orders of magnitude 
variation in saturated hydraulic conductivity (Ks) was observed 
in a field (Rienzner and Gandolfi, 2014). This field spatial vari-
ability needs to be considered when a model is used to evaluate 
management effects (e.g., of irrigation levels). There are more 
studies on the effects of soil spatial variability on simulated 
N leaching than on crop production. Djurhuus et al. (1999) 
found that a geometric mean or a stochastic mean of hydraulic 
conductivity was sufficient for simulating N leaching using the 
Daisy model. Similarly, Hansen et al. (1999) demonstrated that 
simulated N leaching using average soil parameters (e.g., clay 
content and soil organic C) was comparable to that averaged 
from 25 Daisy runs with parameters sampled from distribu-
tions using Monte Carlo sampling.

Irrespective of spatial variability, field measured soil hydrau-
lic properties were better in simulating crop yield than the 
laboratory measured values (Gijsman et al., 2003; Ma et al., 
2012a). On the other hand, using a simple crop production 
model, Hakojarvi et al. (2013) found that observed yield varia-
tion in the field could not be explained by the variation of field 
soil hydraulic properties alone. Other factors such as lodging, 
slopes, and rainfall variability, also contributed to yield vari-
ability. However, spatial variability of soil in the field is likely 
the major factor in most cases, and it is important to know the 
contribution of spatial variability of soil hydraulic properties to 
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ABStrAct
Spatial variability in field soil properties is a challenge for system 
modelers who use single representative values, such as means, for 
model inputs, rather than their distributions. In this study, the 
root zone water quality model (RZWQM2) was first calibrated 
for 4 yr of maize (Zea mays L.) data at six irrigation levels in 
northern Colorado and  then used to study spatial variability of 
soil field capacity (FC) estimated in 96 plots on maize yield and 
biomass. The best results were obtained when the crop param-
eters were fitted along with FCs, with a root mean squared error 
(RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. 
When running the model using each of the 96 sets of field-esti-
mated FC values, instead of calibrating FCs, the average simu-
lated yield and biomass from the 96 runs were close to measured 
values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 
for biomass. When an average of the 96 FC values for each soil 
layer was used, simulated yield and biomass were also acceptable 
with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for bio-
mass. Therefore, when there are large numbers of FC measure-
ments, an average value might be sufficient for model inputs. 
However, when the ranges of FC measurements were known for 
each soil layer, a sampled distribution of FCs using the Latin 
hypercube sampling (LHS) might be used for model inputs.
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total yield variability and to see if such contribution interferes 
with simulated management effects.

Few studies have been published in the literature on how to 
account for the effects of spatial variability of measured soil 
properties on simulated crop yield variability. Using the EPIC 
model, Perez-Quezada et al. (2003) found that FC and wilting 
point (WP) were the key soil parameters for simulating spatial 
variability of yield. Using the CERES-Maize model, Sadler 
et al. (2000) found that the model was not sensitive enough 
to soil type (hence, soil FC, WP, and Ks) to be used for site-
specific water management purposes although simulated yield 
was responsive to rainfall. They proposed that the insensitivity 
was due to one of two reasons–either the CERES-Maize soil 
parameters did not adequately describe the soils or the simu-
lated soil processes did not adequately match those occurring 
in the field. On the contrary, Basso et al. (2001) found that 
spatial distribution of soybean [Glycine max (L.) Merr.] yield 
among the gridded field sections could be predicted from soil 
parameters (i.e., FC and WP) and plant population for each 
grid. Thus, more studies are needed to identify the sensitivity of 
crop models to soil properties so that modelers can focus on the 
critical parameters for precision farming.

In addition to soil parameters, correct plant parameters are 
also important for model application in precision farming. 
Unfortunately, several of the plant parameters are conceptual 
and difficult to measure directly. Therefore, they are usu-
ally calibrated from one or more experimental data sets. The 
uncertainty of these parameters decreases with the number of 
data sets used in model calibration (Ma et al., 2012b; Pathak et 
al., 2012). It is also important to use an automated optimiza-
tion algorithm so that user bias will not affect the calibration 
results. Pathak et al. (2012) applied the generalized likelihood 
uncertainty estimation (GLUE) method with the CSM–
CROPGRO–Cotton model and derived plant parameters 
for a cotton cultivar grown across three locations in Georgia 
and Florida that simulated yields better than the original 

parameters. Ma et al. (2012b) used the Parameter Estimation 
software (PEST) (Doherty, 2010) to obtain better simulation 
of maize yield than previous calibration with the manual trial-
and-error method for the RZWQM2 model (Ma et al., 2012a).

The RZWQM2 simulates soil water balance based on the 
Green–Ampt and Richards’ Equations. This detailed soil water 
movement approach should simulate the soil water balance 
better and enhance the sensitivity of the CERES-Maize crop 
growth model in RZWQM2 to soil types compared to the 
CERES-Maize model in decision support system for agrotech-
nology transfer (DSSAT) that Sadler et al. (2000) used in their 
study. The objectives of this study were to (i) obtain represen-
tative parameters for a maize cultivar (Dekalb 52-59) grown 
in eastern Colorado under 4 yr of full and deficit irrigation 
(2008–2011) using the RZWQM2 and PEST; and (ii) investi-
gate the effects of spatial variability of FC on simulated maize yield 
using measured FC from 96 plots in the experimental field site.

MAteriAlS And MethodS
Field experimental design

The 4-yr field experiment was initiated in 2008 near Greeley, 
CO (40.45° N, 104.64° W, 1450 m above sea level). The site con-
tains three major soil types: Nunn (fine, smectitic, mesic Aridic 
Argiustoll), Olney (fine-loamy, mixed, superactive, mesic Ustic 
Haplargid), and Otero (coarse-loamy, mixed, superactive, cal-
careous, mesic Aridic Ustorthent). Weather data were recorded 
on site with a standard Colorado Agricultural Meteorological 
Network (http://ccc.atmos.colostate.edu/~coagmet/) weather 
station (GLY04), including hourly solar radiation, precipitation, 
air temperature, wind speed, and relative humidity. Missing 
weather data at the beginning of the study were estimated with 
data from a station 800 m to the east (GLY03).

The 4-ha field was divided into four sections (A, B, C, D 
from left to right in Fig. 1) and each section was then subdi-
vided into four replicate blocks (top to bottom), which were 
subdivided into six 9 by 44 m small plots to which water 

Fig. 1. Layout of the 96 plots in sections A, B, C, and D, planted to maize from 2008 to 2011. The filled color represents electrical 
conductivity (EC) measured for the 0- to 90-cm soil profile in 2012 to show the spatial variability of the soil. Darker colors represent 
higher EC values.
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treatments were randomly assigned (randomized complete 
block), resulting in 24 plots per section and a total of 96 plots. 
Maize was planted to a different section in the order of D, B, 
A, and C from 2008 to 2011 in rotation with wheat (Triticum 
aestivum L.), sunflower (Helianthus annuus L.), and Pinto 
bean (Phaseolus vulgaris L.). Thus, each of the sections and all 
the 96 plots were planted to maize once during the 4 yr (Fig. 
1). As shown by the electrical conductivity map (EC) in Fig. 1, 
there was just as much variability within plots as between plots. 
Before planting, each plot was irrigated to make sure initial soil 
water contents were similar among treatments.

Maize (Dekalb 52-59) was planted at 81,000 seeds ha–1 with 
0.76 m row spacing. Six irrigation treatments (T1-T6; micro-
irrigation with surface drip tubing adjacent to each row) with four 
replicates each were designed to meet a certain percentage of crop 
evapotranspiration (ETc) requirements (Allen et al., 1998, 2005, 
2007) during the growing seasons: 100% (T1), 85% (T2), 70% 
(T3), 70% (T4), 55% (T5), and 40% (T6) of ETc. Except for T1 
and T3, approximately 20% of the projected irrigation amount 
during the vegetative stage was saved for use during the reproduc-
tive stage. The ETc requirement was estimated on a daily basis from 
the product of the alfalfa (Medicago sativa L.) referenced evapo-
transpiration ( ETr) and a crop coefficient, and irrigations were 
applied every 3 to 7 d. Treatments T3 and T4 were designed to 
compare the differences in water allocation between vegetative and 
reproductive stages on crop production under deficit irrigation.

The amount of crop water use (actual ET) for each treatment 
was calculated on a daily basis based on irrigation, rainfall, soil 
water content, and atmospheric demand (FAO 56, Allen et al., 
1998). Soil water content was measured near the center of each 
plot twice a week during the growing season with a portable 
time domain reflectometry (TDR) moisture meter (MiniTrase, 
Soil Moisture Equipment Corp., Santa Barbara, CA) for the 
0- to 15-cm soil layer and with a neutron attenuation moisture 
meter (CPN-503 DR Hydroprobe, InstroTek Inc., Concord, 
CA) between 15 and 200 cm below the soil surface at 30 cm 
intervals (30, 60, 90, 120, 150, and 200 cm). The neutron 
moisture meter was calibrated for the site soils and calibration 
verified annually. Field capacity for each plot at each depth was 
estimated as the measured soil water content about 1 d after a 
large irrigation or rainfall event that resulted in increased soil 
water content at deeper depth. The soil water content at wilt-
ing point was assumed to be 50% of FC based on Allen et al. 
(1998) and Rawls et al. (1982) and verified by pressure plate 
measurements of soils from the field. Since maize was planted in dif-
ferent plots each year, a total of 96 sets of FC values were estimated 
for each depth increment (6 treatments × 4 replicates × 4 yr).

Fertilizer as urea-ammonium-nitrate was applied at planting 
and then with irrigation water during the growing seasons as 
needed based on estimated plant growth and expected N uptake. 
Nitrogen was only applied to the plots when irrigation water was 
required for all plots so that equal amount of N was applied to 
all the treatments. Total N applied was 134 kg N ha–1 in 2008, 
160 kg N ha–1 in 2009, 146 kg N ha–1 in 2010, and 178 kg N ha–1 
in 2011 for all treatments. Total irrigation amounts were 46.9, 
36.9, 31.3, 30.3, 21.1, and 16.7 cm in 2008; 42.7, 35.6, 30.7, 25.9, 
18.7, and 12.9 cm in 2009; and 38.6, 33.3, 28.3, 24.9, 18.3, and 
13.0 cm in 2010; and 50.5, 40.8, 34.8, 32.6, 24.2, and 17.7 cm in 
2011 for T1 through T6, respectively.

Canopy cover was measured both with a photosynthetically 
active radiation sensor (AccuPAR LP-80, Decagon Devices, 
Pullman, WA) and was converted to leaf area index (LAI) (Ma 
et al., 2012a). Grain yield was measured by hand harvesting 
the ears from the center 15 m of the center four rows of each 
plot (46 m2). Grain was threshed with a stationary thresher, 
weighed, and subsampled for moisture content determination. 
Plant population (plants ha–1) was measured by counting the 
number of plants in the center 15 m of the center four rows of 
each plot (46 m2). Final aboveground biomass (kg ha–1, dry 
weight) was measured by cutting 10 (2008 and 2011) or 15 
(2009 and 2010) adjacent plants 10 cm above the soil surface 
in each plot (four replications), separating the biomass into 
ears and stover; drying the ears and a subsample of the stover; 
threshing the grain; redrying the cobs and adjusting the stover 
and grain weights for moisture content; and summing the dry 
weight of the stover, grain, and cobs. Average biomass per plant 
was multiplied by the plant population for each plot. More 
details on the experimental design are available in Ma et al. 
(2012a), Fang et al. (2014), and Saseendran et al. (2014).

root Zone Water Quality Model and Parameter 
estimation Software optimization

The RZWQM2 model is a whole system model with detailed 
soil C/N dynamics, plant growth, water and solute transport, 
and heat flow (Ahuja et al., 2000). The model also includes 
surface energy balance from the simultaneous heat and water 
(SHAW) model and plant growth from the DSSAT family (Ma 
et al., 2012b). Recently, the PEST software was coupled into 
RZWQM2 to facilitate model calibration. In this study, the 
CERES-Maize model from the DSSAT family in RZWQM2 
was used to simulate maize production. The model was run for 
each treatment starting 1 January for each year with the same 
initial soil condition after the soil organic pools were initialized 
by running the model for 10 yr (Ma et al., 1998). Simulation 
results from all treatments and years were pooled together to 
define an objective function for PEST optimization. As a result, 
calibrated parameters should be applicable to all the years and 
treatments and are less biased due to variability in weather and 
soil conditions (Ma et al., 2012b; Pathak et al., 2012).

To run the CERES-Maize model in RZWQM2, drained 
upper limit and lower limit of plant available water were 
assumed to be FC and wilting point, respectively (Ma et al., 
2006). Saturated soil hydraulic conductivity (Ks, cm h–1) was 
calculated from the following equation (Ahuja et al., 1989):

Ks = 764.5(θs – FC)3.29  [1]

where θs is soil water contents at saturation (cm3cm–3). The 
ranges of FC for each soil layer and plant parameters are listed 
in Tables 1 and 2, respectively, based on field measurements 
and a previous study on the site (Ma et al., 2012a). An overall 
objective function was defined in the following form (Nolan et 
al., 2011):
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where n is the number of output variables to optimize and 
mi is the number of observations for each variable, wi is the 
assigned weight for each observation, and yi,j and y/

i,j are paired 
observed and simulated values. In this study, four output vari-
ables were included in the F value; maize yield, maize biomass, 
LAI, and total soil water content in the soil profile, with 
weights (wi) of 0.0017, 0.0051, 0.60, and 4.18, respectively. 
These weights were initially determined using an error-based 
approach (Hill and Tiedeman, 2007) as the inverse of the stan-
dard deviation of each group of observations, and then adjusted 
such that no observation group dominated or was dominated 
by the other groups. The end result was that the four obser-
vation groups (output variables) had about the same sum of 
squares contribution to the objective function (F) value.

Root mean squared error was used to quantify the goodness 
of fit of the predicted results to the field measured results for a 
given observation i:
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distributions and Sampling of 
estimated Field capacity

After the model was calibrated for treatment average experimen-
tal data for grain yield, biomass, LAI, and soil water content (Fang et 
al., 2014), it was then used to examine FC variability effect on simu-
lated maize production, using the 96 sets of field-estimated FC data. 
Four modeling exercises (Case 1–4 shown below) were conducted in 
this study using the same plant parameters as calibrated:

1. Case 1: Scenarios for each irrigation treatment (six treat-
ments) and each year (2008, 2009, 2010, and 2011) were 
run with all the 96 sets of estimated FCs. Since the 96 sets of 
FCs were estimated from the 96 plots in the field, this exer-
cise was designed to study spatial variability of FCs in a field 
on crop yield simulation. A total of 2304 model runs were 
conducted (6 treatments × 4 yr × 96 sets of FC values).

2. Case 2: Instead of using the 96 sets of measured FCs 
directly as in Case 1, we sampled 100 sets of FCs using the 
Latin hypercube sampling (LHS) method, by assuming a 
log-normal distribution of FC (Ma et al., 2000; Hansen et 
al., 1999). Similar to Case 1, scenarios for each treatment 
and each year were run with the 100 sampled values of FC 
values, which resulted in a total of 2400 model runs (6 
treatments × 4 yr × 100 sampled FC values).

3. Case 3: Instead of running each treatment and each year for 
all the 96 sets as in Case 1 or 100 sets as in Case 2, we ran each 

Table 1. Calibrated and averaged soil field capacity (FC) for each soil layer in this study, in comparison to the calibrated FC used in previ-
ous studies (Ma et al., 2012a; Saseendran et al., 2014).

Soil depth Bulk density rb qs

Ranges of FC 
used for PEST 

calibration

Final calibrated 
values of FC 
using PEST

Averaged FC from 
the 96 sets of 

measured FC for 
each plot

Averaged FC 
from the 100 

LHS sampled FC

FC used in 
previous 
studies

cm g cm–3 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  cm3cm–3  –––––––––––––––––––––––––––––––––––––––––––––––––––––––––
0–15 1.492 0.437 0.18–0.32 0.231 0.258 0.241 0.262
15–30 1.492 0.437 0.14–0.32 0.242 0.239 0.214 0.249
30–60 1.492 0.437 0.13–0.38 0.230 0.211 0.225 0.220
60–90 1.568 0.408 0.13–0.37 0.206 0.185 0.222 0.187
90–120 1.568 0.408 0.13–0.32 0.205 0.182 0.206 0.173
120–150 1.617 0.390 0.13–0.31 0.263 0.183 0.202 0.162
150–200 1.617 0.390 0.13–0.31 0.310 0.209 0.203 0.198

Table 2. Cultivar coefficients of the CERES-maize model in root zone water quality model (RZWQM2) as calibrated in this study and in 
previous studies (Ma et al., 2012a; Saseendran et al., 2014).

Acronyms used and definitions of traits. Units Range Final values
Values used by 

Saseendran et al. (2014)
Values used by Ma 

et al. (2012a)
P1- Degree days (base temperature of 8°C) 
from seedling emergence to end of juvenile 
phase.

ptd† 100–450 245.6 260 260

P2- Day length sensitivity coefficient [the 
extent (days) that development is delayed 
for each hour increase in photoperiod above 
the longest photoperiod (12.5 h) at which 
development proceeds at maximum rate].

0–2 0.156 0.6 0.2

P5- Degree days (base temperature of 8°C) 
from silking to physiological maturity

ptd 600–1000 704 620 570

G2- Potential kernel number kernel number 
per plant

440–1000 994 1000 920

G3- Potential kernel growth rate mg (kernel d) –1 5–16 6.24 6.9 7
PHINT- Degree days required for a leaf tip 
to emerge (phyllochron interval)

ptd 38–55 52.89 43.0 50

† Photothermal days.
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plot with its respective estimated FCs. A total of 96 model 
runs were conducted (6 treatments × 4 yr × 4 replicates).

4. Case 4: Taking an average of the 96 sets of measured FCs 
for each soil layer, we then ran the model for each treat-
ment and each year using the averaged FC. A total of 24 
runs were completed (6 treatments × 4 yr).

reSultS And diScuSSion
calibration of root Zone Water Quality Model
In earlier simulation studies with the same experimental data 

set, the RZWQM2 parameters were calibrated manually by 
Saseendran et al. (2014) using the trial-and-error method and 
by Ma et al. (2102a) with semi-automation. In this study, the 
fully automated calibration algorithm from PEST was used to 
minimize the objective function in Eq. [2]. Detailed procedure 
of PEST model calibration for this data set is available from 
Fang et al. (2014). The PEST-calibrated FC (θ1/3) was slightly 
lower for the top 30-cm soil profile and slightly higher for the 
other layers compared to those used by Ma et al. (2012a) and 
Saseendran et al. (2014) (Table 1). Calibrated plant parameters 
were similar to those used by Ma et al. (2012a) and Saseendran 
et al. (2014), especially parameters P1, G2, and G3 (Table 2). 
Across the 4 yr and all treatments, the PEST-calibrated model 
simulated grain yield, final biomass, peak LAI, and soil water con-
tent with RMSEs of 354 kg ha–1, 1202 kg ha–1, 0.78 cm2 cm–2, 
and 0.036 cm3cm–3, respectively. Goodness of calibration in terms 
of relative deviation (RMSE/average measured yield) showed an 
increasing trend as irrigation level decreased from 100% ET to 
40% ET for both yield (3–8%) and biomass (5–13%).

Averaging across the 4 yr, measured yield was 10,635, 
10,303, 9369, 8754, 6763, and 5140 kg ha–1 for T1 through 
T6, respectively. Corresponding simulated yield was 10,619, 
10,318, 9334, 8894, 6921, and 5267 kg ha–1. Similarly, aver-
age measured aboveground biomass was 21,232, 20,670, 
18,479, 17,321, 13,158, and 11,746 kg ha–1 for T1 through T6, 
respectively, and corresponding average simulated biomass was 
20,416, 20,005, 18,563, 17,338, 13,626, and 11,242 kg ha–1. 
Both measured and simulated results showed that T3 produced 
slightly better crop growth than T4, which was probably due 
to the intended water saving during vegetative stage not being 
fully replaced in the reproductive stage in T4 and the resulting 
slightly higher total irrigation water for T3 than for T4. These 
results were better than those obtained by the trial-and-error 
method (Saseendran et al., 2014). Simulated anthesis dates for 
year 2008, 2009, and 2011 were 82, 84, and 88 d after planting 
(DAP), respectively, which were close to the observed anthesis 
dates of 85, 84, and 90 DAP. Potential error in field observa-
tion was 3 d due to frequency of field observations. The simu-
lated anthesis date for 2010 was 76 DAP compared to 83 in 
field observation. Anthesis dates did not change with irrigation 
treatments in either observed or simulated results.

Simulated soil water storage in 0 to 200 cm was on average 
higher than measured (Fig. 2). However, given the average 
experimental variation of 5.5 cm among replicates, simulated 
soil water storage was reasonable with a RMSE of 3.5 cm. The 
model overpredicted LAI at early growth stages when LAI 
was low and under-simulated LAI when LAI was high with 
an average RMSE of 0.78 cm2cm–2 (Fig. 2), which has been 
reported earlier for the CERES-Maize model (Yu et al., 2006; 

Saseendran et al., 2005). In general, simulated evapotranspira-
tion (ET) was lower than ET estimated from soil water bal-
ance during the crop seasons. The ET was closely simulated in 
2008 except for the 100% ETc irrigation treatment followed by 
2009 ET simulations where T2, T3, and T4 were adequately 
simulated (Fig. 3). The RMSE for ET simulation was 5.6 cm, 
which was close to the standard error of 5.5 cm in soil water 
measurements. More detailed comparison between simulated 
and measured yield, biomass, and crop responses to irrigation 
management is available in Fang et al. (2014).

effects of Field capacity on 
Simulated Yield and Biomass

To investigate the effect of spatial variability in the estimated 
FC on the uncertainty of simulated yield and biomass, we used 
the calibrated plant parameters above without further modifi-
cation, especially as these values were close to those in previous 
studies (Ma et al., 2012a; Saseendran et al., 2014). Figure 4 
shows the distributions of FC estimated from field measure-
ments in the 96 plots planted to maize from 2008 to 2011, 
and Fig. 5 shows the distributions sampled with LHS based on 
the ranges listed in Table 1. Average LHS sampled FCs were 
0.241, 0.214, 0.225, 0.222, 0.206, 0.202, and 0.203 cm3cm–3 
for the 0 to 15, 15 to 30, 30 to 60, 60 to 90, 90 to 120, 120 to 
150, and 150 to 200 cm soil layers, respectively. Corresponding 
average FCs from field estimation was 0.258, 0.239, 0.211, 
0.185, 0.182, 0.183, and 0.209 cm3cm–3. Although these two 
sets of FCs were similar, the field-estimated FC values were 
lower than the calibrated FC values for the 60- to 150-cm soil 
depth (Table 1). It is quite possible that field-measured FC was 
lower because the lower soil layers might not have reached FC 
in the semiarid Colorado climate. It should also be noted that 
the average set of FCs from the LHS sampling was closer to 
the PEST-calibrated FCs (0.231, 0.242, 0.230, 0.206, 0.205, 
0.263, and 0.310 cm3cm–3) (Table 1).

Results from running the calibrated model for all the 96 sets 
of FCs (Case 1) are shown in Fig. 6. The average simulated yield 
and biomass had a simulated RMSE of 376 and 1504 kg ha–1, 
respectively, which were slightly higher than those using FC 
values calibrated with PEST (354 and 1202 kg ha–1). Similar 
to calibrated results, relative deviation of simulation error 
(RMSE/average measured value) ranged from 3 to 9% for 
yield and 6 to 18% for biomass as irrigation water decreased 
from 100% ET to 40% ET. Standard deviations of simulated 
yield and biomass among the 96 sets of FCs ranged from 47 
to 561 kg ha–1 and from 142 to 1167 kg ha–1, respectively, 
which were smaller than standard deviations of measured 
yield (from 150 to 1200 kg ha–1) and biomass (from 60 to 
3800 kg ha–1). We also noted that there was no pattern in the 
standard deviation of measured yield and biomass in relation 
to irrigation treatments. In contrast, simulated standard devia-
tions increased as the irrigation deficit increased from 100% 
ETc to 40% ETc, suggesting that the soil parameters were less 
important when there was enough precipitation and irrigation 
(Angulo et al., 2014). As shown in Fig. 6, average simulated 
yield and biomass were very close to the measured average yield. 
Therefore, it was possible to run the model with field-measured 
FC without the need to calibrate soil parameters, allowing 
users to focus on the plant parameters only.
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Fig. 2. Root zone water quality model (RZWQM2) simulated vs. measured profile (0–200 cm) (top) soil water storage and (bottom) leaf 
area index (LAI) from 2008 to 2011 for all treatments.

Fig. 3. Root zone water quality model (RZWQM2) simulated vs. estimated evapotranspiration (ET) during the crop seasons from 2008 to 
2011 for all the treatments.
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Fig. 4. Field capacity (FC) distributions as estimated in the field for each soil layer.
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Fig. 5. Field capacity distributions for each soil layer as sampled using Latin hypercube sampling (LHS) given the observed range in Table 1.
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Fig. 6. Simulated maize yield (top) and biomass (bottom) by running each treatment with the 96 sets of field capacity for the soil profile as 
estimated in Fig. 4 (Case 1), in comparison with measured and calibrated yield and biomass. The vertical bars are 1 SD from the mean.
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The average simulated maize grain yield from the 100 sets of 
LHS sampled FCs (Case 2) had higher RMSE (544 kg ha–1) 
than the calibrated yield (354 kg ha–1). Simulated average bio-
mass was also a little worse, with RMSE = 1632 kg ha–1 com-
pared to 1202 kg ha–1 for the calibrated biomass. These RMSEs 
were slightly larger than those in Case 1 where measured FCs 
were used directly as model inputs. Again, model performance 
became worse as irrigation decreased from 100% ET to 40% 
ET with relative RMSE increased from 3 to 13% for yield and 
6 to 16% for biomass. Standard derivations among simulated 
yield and biomass were higher for the two lowest irrigation 
treatments (T5 and T6) than for the four highest irrigation 
treatments (Fig. 7). The standard deviation of the simulated 
yields due to the 100 sets of FCs ranged from 30 to 600 kg ha–1 

and of the simulated biomass from 130 to 1200 kg ha–1, which 
were smaller than standard deviations of measured treatment 
yields (from 150 to 1200 kg ha–1) and biomass (from 60 to 
3800 kg ha–1). As shown in Fig. 7, averaging simulated values 
from the LHS sampling provided comparable results in 2008 
and 2009. However, both yield and biomass were overpredicted 
for the lowest four deficit irrigation treatments in 2010 and 
2011 (T3, T4, T5, T6), in comparison with calibrated yield 
and biomass. Since the average simulated yield and biomass 
with the LHS generated FC values were generally within one 
standard deviation of the measured results, it was reasonable 
to conclude that the spatial variability in FC did not affect our 
simulated management effects (i.e., irrigation).

Fig. 7. Simulated maize yield (top) and biomass (bottom) by running each treatment with 100 sets of field capacity for the soil profile as 
generated in Fig. 5 (Case 2), in comparison with measured and calibrated yield and biomass. The vertical bars are 1 SD from the mean.
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When the model was run for each plot (four replicated plots) 
with its respective field estimated FCs (Case 3), the average 
yield and biomass for each treatment from the four replicated 
plots showed the highest RMSEs (564 kg ha–1 for yield and 
1867 kg ha–1 for biomass) (Fig. 8). Simulated standard devia-
tion among replicated plots increased as water deficit increased. 
Relative RMSE between simulated and measured values 
also increased from 4 to 10% for yield and from 6 to 20% for 
biomass as irrigation decreased from 100% ET to 40% ET. 
The only noticeable differences between Case 3 and Case 1 
were biomass simulation for the 40% ETc treatment in 2008 
and the 55% ETc treatment in 2009 (Fig. 8). Therefore, for 
practical purposes, running individual plots (replicates) and 
then averaging the simulation results provided comparable 

results as running the model with an averaged FC for each 
of the 96 plots. This point was further illustrated when the 
averaged FCs of 0.258, 0.239, 0.211, 0.185, 0.182, 0.183, and 
0.209 cm3cm–3 from each of the soil layers were used (Case 
4, Fig. 9), where simulated yield and biomass had RMSEs of 
438 and 1627 kg ha–1, respectively. In terms of relative RMSE, 
simulated errors increased from 4 to 11% for yield and 6 to 20% 
for biomass as irrigation water decreased from 100 to 40% ET, 
which were similar to other Cases. Given the nonlinearity of 
the processes simulated, the ability to use an average set of FC 
values to simulate crop production is an unexpected feature but 
useful to users (Hansen et al., 1999, Djurhuus et al., 1999).

Fig. 8. Simulated average maize yield (top) and biomass (bottom) by running each individual plot with its respectively estimated field 
capacity (Case 3), in comparison with measured and calibrated yield and biomass. The vertical bars are 1 SD from the mean.
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effects of Field capacity on Simulated leaf 
Area index and Soil Water content

In general, simulated biomass and LAI were improved as 
RMSE of simulated yield became smaller (Fig. 10). However, 
RMSE of simulated soil water content did not respond linearly 
to RMSE of simulated yield. Therefore, some of the FC sets 
might produce good simulation of yield with poor soil water 
simulation, which was more so for Case 1 where the measured 
FCs were used directly for simulations than for Case 2 where 
FCs were sampled from a distribution. In addition, some of the 
FC sets simulated higher RMSEs in yield, LAI, and biomass 

when they were sampled from the prescribed distributions. It 
was also worthwhile noting that the relationship between yield 
and FC depended on irrigation treatment and year. For exam-
ple, a weak positive relationship between yield and FC (either 
0–30-cm or 0–60-cm soil depth) was observed for the 100% 
ET treatments for all the years. On the other hand, a weak 
negative correlation between yield and FC (either 0–30-cm or 
0–60-cm soil profile) was simulated for the 40 and 55% ET 
treatments for all the years. However, there was no consistent 
correlation between yield and FC (either 0–30- or 0–60-cm 
soil profile) for the 85 and 70% ET treatments across the 4 yr. 

Fig. 9. Simulated maize yield (top) and biomass (bottom) by running the model with an average field capacity from Fig. 4 (Case 4), in 
comparison with measured and calibrated yield and biomass. The vertical bars are one standard deviation (SD) from the mean.
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Simulated yield did not correlate to average FC for 0- to 90-, 
0- to 120-, or 0- to 200-cm soil depths, which was expected 
because irrigation amount was just enough to replace poten-
tial ET without excess water for leaching to deeper soil layers. 
Therefore, it was the combination of FC in the soil profile that 
determined simulated yield, not FC from an individual soil 
layer or an average FC for the soil profile.

As expected, the lowest RMSEs for yield, biomass, LAI, and 
soil water content were obtained when PEST was employed 
to fit all the data (solid upward triangle in Fig. 10). Using 

an average FC set from the measured FCs, the RMSEs were 
almost as good as the fitted ones (solid square symbols in Fig. 
10). The worse RMSEs were found when the model was run 
individually for each plot with its respective FCs and then aver-
aged the simulated yield values for each treatment (solid circle 
in Fig. 10). These results demonstrated that a large number of 
measurements were needed to represent a field. Furthermore, 
since the plots are 9 by 44 m, there is as much variability within 
the plots as between plots (Fig. 1). Averaging across plots is 
needed to reflect even within plot variability.

concluSion
Using a calibrated system model, RZWQM2, we demon-

strated the effect of spatial variability of soil properties on 
maize production in terms of yield and biomass. We found 
that using a mean FC by soil layer measured in the field was 
sufficient for practical purposes when a large number of field 
measurements were taken, with 438 and 1627 kg ha–1 for yield 
and biomass, respectively. However, simulation results were 
improved when distributed inputs were used for FC instead of 
average values, with 376 and 1504 kg ha–1 for yield and bio-
mass, respectively. So, when only the ranges of FC are available 
in a field, it is better to create a distribution of the FC from these 
ranges using a statistical sampling technique as model inputs. As 
a result, users need only to focus on optimizing plant parameters.

The above results were obtained for a well-controlled drip-
irrigation experiment. The spatial variability of FCs may 
have less influence on both measured and simulated yield and 
biomass under an efficient irrigated condition than under 
rainfed conditions, as the controlled irrigation is scheduled 
such that applied water stays within the root zone. In the 40% 
ET treatment in this experiment, which was close to a rainfed 
treatment, the spatial variability resulted in a much greater 
variability in simulated yield and biomass. The variability in 
yield and biomass as simulated by the model due to spatial dis-
tribution in FCs was less than observed variability in the field. 
Therefore, field variability in yield and biomass could not be 
fully explained by FC variability alone. Other soil properties, 
such as bulk density, nutrient level, and uneven distribution of 
irrigation water, might have contributed to the larger variation 
in measured yield and biomass.
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